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Abstract

An inplane problem for a crack moving with constant subsonic speed along the interface of two piezoelectric mate-
rials is considered. A mechanically frictionless and electrically permeable contact zone is assumed at the right crack tip
whilst for the open part of the crack both electrically permeable and electrically insulated conditions are considered. In
the first case a moving concentrated loading is prescribed at the crack faces and in the second case an additional elec-
trical charge at the crack faces is prescribed as well. The main attention is devoted to electrically permeable crack faces.
Introducing a moving coordinate system at the leading crack tip the corresponding inhomogeneous combined Dirich-
let-Riemann problem is formulated and solved exactly for this case. All electromechanical characteristics at the inter-
face are presented in a closed form for arbitrary contact zone lengths, and further, the transcendental equation for the
determination of the real contact zone length is derived. As a particular case of the obtained solution a semi-infinite
crack with a contact zone is considered. The numerical analysis performed for a certain piezoelectric bimaterial showed
an essential increase of the contact zone length and the associated stress intensity factor especially for the near-critical
speed region. Similar investigations have been performed for an electrically insulated crack and the same behavior of
the above mentioned parameters is observed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials due to their intrinsic thermo-electro-mechanical coupling are referred to the most
actively developed contemporary materials which are widely used in engineering as sensors, transducers and
actuators. However, an adhesion of isotropic, anisotropic or piezoelectric components leads usually to the
appearance of interface cracks which can situate in the interfaces till the appearance of certain critical con-
ditions which lead to growth and propagation of a crack into the matrix or more really along the interfaces.
The explanation of the static interface cracks behavior and their dynamic propagation along the interfaces
of multiphase materials under mechanical, thermal and electrical loadings forms an important basis for an
assessment of the strength of real constructions.

The first solution of a dynamic steady state crack problem was given by Yoffe (1951) who considered a
crack of a finite length moving with constant velocity in an infinite isotropic solid. The investigation of an
interface crack propagation along the interface of two isotropic solids has been initiated by Gol’dstein
(1966) and was continued by Willis (1971), Atkinson (1977) and other authors. In these papers various
loadings and different crack velocities with respect to the Rayleigh wave speed have been considered.
The Lekhnitskii (1963), Eshelby et al. (1953) and Stroh (1958) formalisms have been applied by Wu
(1991) and Yang et al. (1991) for the investigation of an extending interface crack in an anisotropic bima-
terial along a straight interface. The generalization of Yoffe’s (1951) and Gol’dstein’s (1966) problems upon
the investigation of an interface crack propagating along an interface of two anisotropic materials has been
particularly performed by Yang et al. (1991).

An effect of the temperature upon an interface crack running along the interface of isotropic and aniso-
tropic materials has been studied in the papers by Herrmann and Noe (1992, 1993, 1995) and Noe and
Herrmann (1993, 1997). Experimental investigations and theoretical studies of thermoelastic problems
for a crack propagating along a curvilinear interface has been performed in these papers by means of
the method of caustics and the analytical approach based upon the Lekhnitskii-Eshelby—Stroh formalism.

It is worth to note that to our knowledge the results concerning the propagation of an interface crack
along the interface between two piezoelectric materials or between piezoelectric and nonpiezoelectric mate-
rials are practically absent in the literature. Only the papers by Chen et al. (1998) and Wang et al. (2003)
where an anti-plane problem for a Griffith crack moving along an interface of a piezoelectric bimaterial was
studied as well as by Shen et al. (2000) considering the power of the stress field singularities concerning an
in-plane electrically permeable crack running between two piezoelectric materials can be referred to on this
subject.

Moreover, all results mentioned above were obtained in the framework of a so-called “open crack”
model for an interface crack (Williams, 1959) possessing for a subsonic in-plane case the oscillating singu-
larity at the propagating crack tip. Such an approach is suitable if the interpenetration zone of the crack
faces remains small with respect to the current crack length or some other characteristic dimensions of
the problem. For a static case this condition is usually satisfied for real materials provided the absence
of essential shear and thermal fields. However, for a propagating crack the bimaterial “constant” ¢ (para-
meter of oscillation) becomes dependent on the crack speed v and according to Yang et al. (1991) this para-
meter can rapidly grow if v tends to the Rayleigh wave speed of one bimaterial component.

The contact zone model for an elastostatic interface crack has been suggested by Comninou (1977) and
was further developed in an analytical way by Simonov (1985), Gautesen and Dundurs (1988), Loboda
(1993) and other authors. An exact analytical investigation of the contact zone model for an interface crack
in an anisotropic bimaterial has been performed by Herrmann and Loboda (1999) and a similar investiga-
tion for a piezoelectric bimaterial has been done by Herrmann and Loboda (2000) and Herrmann et al.
(2001) for electrically insulated and electrically permeable cracks, respectively. A moving semi-infinite inter-
face crack in an isotropic bimaterial under a concentrated loading on its faces was analyzed by Simonov
(1983) by taking into account the contact of the crack faces at the leading crack tip. The dynamic contact
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problem for an orthotropic half-plane and an orthotropic bimaterial plane with different types of boundary
conditions at the material interface was investigated by Nakhmejn and Nuller (1990). Particularly the prob-
lem of the delaminating of a rigid stamp from a semi-infinite orthotropic plane with an account of the open,
closed and bonded zones at its interface was analyzed in this work. An interface crack moving along an
interface with an intersonic speed was considered by Huang et al. (1998). But it is worth to note that for
an intersonic case the bimaterial parameter ¢ becomes a complex value and the mathematical peculiarities
of the problem become completely different from the associated one in the subsonic case. Herrmann et al.
(2004) presented an exact analytical solution for an interface crack between two anisotropic materials mov-
ing along an interface with a subsonic speed.

In the present investigation the problem of a moving interface crack in a piezoelectric bimaterial with an
account of a contact of the crack faces at the leading crack tip is considered. The cases of a finite and a
semi-infinite crack length are under consideration, and the crack speed is restricted to a subsonic regime.

2. Basic relations for a piezoelectric solid with an account of a moving coordinate system

According to Parton and Kudryavtsev (1988) the dynamic constitutive equations for a piezoelectric
material in a fixed coordinate system (X7, X5, X3) can be written in the form

Qu;
(cijrsttr + €5i0) = PW;’ (la)
(_Sisq) + eirsur),si = 0’ (lb)
0ij = Cijsltys + €50 (2a)
Di - _‘gis(p,s + eirsur,sa (Zb)

where uy, ¢, 0, D;, are the elastic displacements, electric potential, stresses and electric displacements,
respectively, and p is the material density. Furthermore, ¢, €; and ¢; are the elastic modulo, piezoelectric
constants and dielectric constants, respectively. Small subscripts in (1)—(2) and afterwards are always rang-
ing from 1 to 3 and Einstein’s summation convention on repeated Latin suffixes has been used. Further, the
right hand side of Eq. (1b) equals zero because the magnetic effects can be neglected for a study of elastic
waves and the so-called quasi-static approximation for the electrical field can be used (Parton and
Kudryavtsev, 1988).

Further, by introducing the vector U = [uy, u», u3, ¢]" and by performing the following traditional coor-
dinate transformation x; = X7 — vt, x, = X5, x3 = X3, where v is the speed of the crack tip which is assumed
to move along an interface. Egs. (1) in the moving coordinates x;,x,, x3 attain the following form:

QU +(R+ R"U; +TU;; =0, (3)
where
0, en Ry e3 To e
Q=[T° L e , @)
€ e e —é3 ey —&33
(Q0)a = cim1 — P20, (Ro)y = cs (To)y = Cinss € = ek, €k, eiail (5

Jir 1s the Kronecker delta and the superscript T stands for the transposed matrix.
It is assumed that the crack speed v is lower than c.., where ¢, is the minimum Rayleigh or Bleustein
(1968)-Gulyaev (1969) wave speed for the bimaterial interface (it will be called critical surface wave speed),
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i.e. the subsonic regime is investigated. In this case the obtained Eq. (3) represents a set of homogeneous
partial differential equations of the elliptic type (Herrmann and Noe, 1995), and therefore, the Lekhnit-
skii-Eshelby—Stroh method of generalized complex potentials can be applied for their solution. Assuming
all fields are independent of the coordinate x5 the required solution of the system (3) is presented in the form

U = af(z), (6)

where f(z) = [f1(2),/2(2),/3(2),f4(z)] is an arbitrary 4-components vector function of the complex variable
z=Xx1 + px3 and the vector a = [al,az,a3,a4]T can be found from the system

[Q +p(R+RY) +p*Tla =0, (7)

which can be obtained by means of the substitution of the ansatz (6) into Eq. (3). A nontrivial solution of
Eq. (7) exists if p is a root of the equation

detQ + (R+R")p+Tp?] = 0. (8)

It was shown that Eq. (8) has no real roots provided v < ¢, therefore we denote the roots of Eq. (8) with
positive imaginary parts as p; and the associated eigenvectors of (7) as a; (i =1,2,3,4). According to Suo
et al. (1992) the most general real solution of Eq. (3) can be presented as

V = Af(z) + Af(2), 9)

where A = [a,2,,a3,2,4] is a matrix composed of eigenvectors, f(z) = [fi(z1),/>(22)./3(23), fa(z4)]" is an arbi-
trary vector function, z; = x; + p;x3 (i = 1,2,3,4) and the overbar stands for the complex conjugate.
Comparing Egs. (3), (6)—(9) with the associated equations of Section 2 of the paper by Herrmann and
Loboda (2000) dealing with a stationary crack it can be clearly seen that formally they are the same if
(Q0)ir> (Ro)ir and (Ty); from Eq. (5) are substituted instead of Qk, Ry and T, respectively, of the men-
tioned paper. This fact is not new and it has been mentioned in many papers. However, it means that the
method developed in the paper by Herrmann and Loboda (2000) for a static interface crack in a piezoelec-
tric bimaterial can be applied also to the investigation of a moving crack for the same dissimilar material.

3. Formulation of the problem and derivation of the basic relations

A tunnel interface crack ¢ < x; < b, x3 =0 (Fig. 1) between two semi-infinite ceramic spaces x3 > 0 and
x3 < 0 which are poled in the x3-direction is considered. The material properties are defined by the matrices
cf.}k)l, eg,?}, EE}) (for x3 <0) and cff,?,, eEf), 81(:/-2) (for x3 <0). It is assumed that the direction of the polarization
of both materials is orthogonal to the crack front and for the upper one (upper index (1)) it can be arbi-
trarily oriented with respect to the crack surface (angle f8) whilst for the lower one (index (2)) it is orthog-
onal to this surface. The crack is loaded by the concentrated loading (P, P,) applied to its faces which is
independent on the coordinate x». It is assumed as well that the crack and the loading are extending with
the speed v, lower than the critical wave speed c.,, in the x;-direction and a frictionless contact zone («, b) of
the arbitrary length appears at the right crack tip.

Assuming that the coordinate system (x;, x3) moves together with the crack tip the interface conditions in
this coordinate system can be written in the following form:

(] = [ua] = [us] = 0; [@] = 0; [013] = [023] = [0:5] =0 for x; & (c, D), (10)
01, =Pid(x; —d); 03, =Pi0(x; —d); 053,=0; [p]=0; [D;]=0 for x| € (c,a), (11)

03=0y3=0; [o5]=0; [u3]=0; [p]=0; [Ds]=0  forx € (a,b), (12)
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Fig. 1. Moving interface crack of a finite length in a piezoelectric bimaterial space under the action of a concentrated loading at its
faces.

where [f]=f" —f means the jump of the function f through the material interface and
S (x) =flx £i-0).

Applying the approach presented for a the stationary crack by Herrmann and Loboda (2000) to the con-
sidered case of a moving crack one arrives at the following expressions written in the moving coordinate
system:

[U'(x1)] = W) = W (xy), (13a)
tD(x;,0) = GW" (x;) — GW ™ (x)), (13b)
U(x)] = UV (x;,0) — UP(x1,0), G=B"D', (14)
B = R" + TAdiag[p,, p,, ps,p,], D=AY —LBY, L =A®BY)™" (15)
WE(x) = W(x; £10), t = [o13,003, 035, Ds] (16)

where the vector function W/(z) is analytic in the whole plane with a cut along the crack region (c,b) and the
superscripts (1) and (2) define the upper and lower materials, respectively.
For the accepted kind of polarization the matrix G has the following structure:

igy 0 813 8us
0 1igp O 0

831 0 igy g
841 0 g 18w

G:

where g1, g2, €33, gaa are real, g; (i,j=1,2,3,4; i # j) are complex, and g;; = —g;, 1= V-1
The analysis of the matrix (17) shows that the stress—strain state in this case can be decoupled into an
in-plane and an out-of-plane problem. Because the out-of-plane problem is relatively simple the main
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attention will be devoted to the in-plane problem which is characterized by the displacements u,u; and the
electrical potential ¢.

Due to the continuity of the electrical conditions at the whole interface and the absence of any electro-
mechanical loading at infinity Wy(z) = 0 is valid in the whole plane. Therefore, from the matrix equation

(13b) the expressions for 0(113)7 032, Dg) at the interface can be written in the form

‘7213)(351,0) =gy Wi () + gy (a) +ign Wy (x1) — g13W5 (x1), (18)
03 (x1,0) = gy W (x1) +igs Wi (x1) — g Wy (v1) +igss W5 (x1), (19)
D (x1,0) = gy Wi (x1) + g W3 (x1) — 8 W7 (1) — G35 (x1). (20)

By combining Egs. (18) and (19) one obtains the following expressions at the interface:
o (x1,0) + ity (x1,0) = TY[F} (x1) +7,F; (x)], j=1,2, (21)

where Fj(z) = Wi(z) +iS;Ws(z) and the constants m;, S;, T}, y; can be found by the following formulas:

2
B (g13 —|—g31)j:\/(g]3 +g31)" + 42381

_ , 2
mi o 2g11 ( )
g3z +m;g 81 —m;g .
T;= g3 — &um, Sj:ﬁ, "_f:%, Jj=12. (23)
] J

As it follows from the analysis of the formulas (22) and (23) the constants 1, 5, S} > are complex while T 5,
712 are real. Besides the following relations

Sip=—mya, 7, =1/p (24)

hold true.
Using Eq. (13a) leads to the following expression for the derivatives of the displacement jumps:

[y (e0)] + 88,3 (x1)] = FJ (1) = F (x1), j=1,2. (25)

In the following the attention will be paid to the case of j = 1 only because the results for j = 2 can be found
from the results for this case.

4. Moving crack of a finite length
The substitution of the presentations (21) and (25) in the boundary conditions (10)—(12) leads to the fol-
lowing inhomogeneous combined Dirichlet-Riemann problem with respect to the function Fi(z)

Fi(x)) +pFy(x) = Tflg(xl) for x; € (¢, a), (26)

ImFy(x;) =0 forx € (a,b), (27)

where g(x;) = (P3 + im P)o(x; — d).
The solution of problems (26) and (27) for trivial values of F(z) at infinity is presented in the paper by
Herrmann et al. (2004) and has the following form:

_X2(Z)
d-z

Y(z)

Fi(z) Y(d))’

Re(/y) +ilm(/y)

(28)
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where
Xz(z):em(z)/ (z=0¢)(z—a), (29)
(b—a)(z—c) Iny,
z) = 2¢ 1 , & =——), 30
N e ERCED e N G0
YE) = VE— @b, Io=a 2 timh (31)

2ni T\X1(d)
Using the obtained solution and the formula (25) leads to the following expressions for the derivatives of

the displacement jumps for x| € (c,a):

(71 +1) Xa(x1)

0, 0)] + 83y, 0] = P52 T2

[Re(zo) +ilm(ly) % (’“)} . (32)

Similarly it follows from Egs. (21) and (28) that in the contact zone (a,b)

Re(Z 1 -
agg)(xl,O) __nxe 0) cosh @, (x) + ! §inh (pz(x1)>
(1 1+
I"]Im 10) 1-— 1 ) Y](xl)
h h ) 33
T (sinh ) + T cosh s ) % (3)
: _ 2cosh qoz(xl) 1)
0)] = Im(71 34
[ul(x17 )] ( ) Y(d) m( 0)7 ( )
while for x; > b:
. Xo(x1) Y(x))
o@@mn+mm@@hmzrmm+ndi;[ww@+amm»ﬂ5, (35)
where
— (b — -
@,(x1) = 2¢; arctan %, Yi(x) = Zl_ ;:, r=1+y)7T.

Using the first formula (13) and the expressions (18)—(20) gives the following expression for the electrical
displacement for x; € (a,b):

DY(x1,0) = Re(ga) [t (1, 0)] + "2E0)IMUE1) ZImlgw)ew (0 0y Re(gy i1, 0))).  (36)
(Im(g3l)) — 833811

Introducing the following stress and electrical intensity factors (IFs)

k= 11m0 V2m(x) — a)ogg)(xl,O), (37)

xX1—a+

ky= lim /2xn(x; — b)o'¥ (x1,0), (38)
x1—b+0
ky = lim /2n(x; —a)D{" (x,,0) (39)

x1—a+0
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and using the relations (33) and (35) leads to the following formulas for k; and k»:

b= 2 e (P = mom ) cos(o () + Relom s (4) (40)
_ 1+'))1 1—0 P3—Im(m1)P] .
fo = L prcoston(d) - P T st @) (@)
where
0.(d) = 26 In (b—a)(d—rc) _b—d

, 0= .
Vb —o)la—d)+/(a—c)(b—d) b—c
On the base of Eq. (36) the electrical IF k4 can be expressed via the SIF k; in the following way:

ky = (Im(g43)gll — Im(gy;)Im(g,3) n (Re(g4l) n Re(gy;)(Im(gy;)Im(g,5) — Im(g43)gll)> "/% - 1>k1

833811 — (Im(g13))2 &33811 — (Im(g13))2 2
(42)

The obtained formulas are mathematically correct for any position of the point a; however, the obtained
solution becomes physically valid if the following inequalities:

o\)(x1,0) <0 forx; € (a,b),  [us(x1,0)] =0 forx € (c,a) (43)

are satisfied and the contact zone model in Comninou’s (1977) sense takes place. It can be shown that for
the satisfaction of the mentioned inequalities it is necessary and sufficient to reach the smooth closing of the
crack
lim0 Va—=xi[uy(x1,0)] =0,
x| —a—!
which is equivalent to the equation k; = 0. Both of these equations due to the formulas (32) and (40) can be
written in the form of the following single transcendental equation

tan ¢, (1) = — % (44)
where
¢, (1) =2¢ 1In A1 - 0) (45)

VO —J+./0(1-7)

and 4 =24 is the relative contact zone length.

It was known earlier and is confirmed here by a numerical verification that for the satisfaction of both
inequalities (43) the maximum root of Eq. (44) situated in the interval (0, 1) should be chosen. This root will
be designated as Ag. In a general case Eq. (44) cannot be solved exactly and a numerical procedure should be
used, but for small values of /1 (4 <« 1) the following asymptotic solution of Eq. (44)

A ~ 40 1 1 P3 — Im(ml)
=~ = — | te - 4
Ao = A =0 exp {81 [tdn ( Re(m)P; + mn (46)

is valid and the appropriate value of n which defines the maximum 4, from the set (46) should be taken.
Introducing in formula (41) Eq. (44) leads to the following expression for the SIF k, which corresponds
to the real contact zone length
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1 1+,
Re(m1) \/2ny, (b — d)

by — VI= 0y (Re(mi)Py)? + (Py — Im(my)Py)>. (47)

5. Moving crack of a semi-infinite length

The model of a moving crack with a finite length considered in the previous chapter is an idealization
which for a crack in a homogeneous material was suggested by Yoffe (1951), and it is suitable for the inves-
tigation of local processes at the crack tip. However, together with this model it is of interest to analyze the
propagating crack with a semi-infinite length which for a case of two dissimilar isotropic materials was ini-
tiated by Gol’dstein (1966). The results for this case can be obtained as a particular case of the above men-
tioned solution.

Thus the crack tip b will be connected with the origin of the moving coordinate system (x;, x3). Further,
the contact zone length will be denoted as r, and the distance from the applied concentrated forces to the
crack tip as d;. It is clear that in this coordinate system b = 0, « = —r and d = —d; hold true. Now if the left
crack tip ¢ tends to (—oo) and by performing the analysis of Egs. (32)—(35), which is similar to that which
was presented in details by Herrmann et al. (2004), the following equations can be obtained:

R(1 + 1) exp(io(x1))
27'E(X1 + dl)

X {cos(n+19)1/il;:+isin(n+19),/Z1j for x; > 0, (48)

R . ) d
0313) (x1,0) = Tam T d) sin(n + o) sinh @5 (x)4 /—7x1

0(313) (x1,0) + im10(113> (x1,0) =

- costa 4 ) st gy 2 )
[} (x1,0)] = AT/ 1 di) [sin(n +9) d—xlj for x; € (—r,0), o

1+ 7y, exp(ig;(x1))
1 27T(X1 +d1)

o6 (61, 0] + i (1, 0)] = TR

—X) —r

X {sin(n+19) i—Ficos(n—i—ﬁ) il —r} for x; < —7, (51)
V =x,
where

R=/(Py — Im(m)P\)” + (Re(m))Py)’, (52)

i . 1 z z N Re(ml)Pl
o(z) = —2¢ lnl_ (\/;+ (/1 +r>’ n= arctamp3 “m(m )P, (53)
Y= —2¢In (\/%—IJM/%), 0s(x1) = 2¢ arctan,/ixxl. (54)
—X

It is worth to be mentioned that for the electrical displacement Dj the relation (36) remains valid pro-
vided the stresses and displacements are used from the expressions (48)—(51).
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On the base of the formulas (40) and (41) the SIFs can be written as

- dfe_— = cos(n + V), (55)
oy = ——RAED) Gy (56)

Re(ml)\/ Zﬂdl'))l

and Eq. (44) for the determination of the real contact zone length attains the following very simple form:
cos(d+1n) =0. (57)

It is convenient to introduce the new parameters o = /0 and o, = r/d; which define the coefficients of
the contact zone length and the distance from the concentrated force to the crack tip for cracks of finite and
infinite lengths, respectively. Therefore the exact solution of Eq. (57) can be given as follows

1
s = cosh ™ % (n+ (0.5 —n))|, (58)

where the integer n should be taken similarly to the previous case.
Further, the SIF k, at the tip of a crack with semi-infinite length can be written in the form

R(y +1)
Re(ml)\/ 27'Ed1y1

For the comparison of the results of the above two models consider Eq. (58) for small values of o,
(¢s < 1). In this case the approximate equality cosh?(x) &~ 0.25exp(2x) is valid and we arrive at the follow-
ing asymptotic formula for o

kor = — (59)

~ 1
Oo R Oy = 4EXp —8—(11 +7(0.5—n))|. (60)
1
A comparable analysis of Egs. (46), (47) and (59), (60) shows the validity of the following equations:

=(1-=0%, keox=010-0 "%h. (61)

6. Numerical results and discussion for an electrically permeable crack

The numerical analysis has been performed for a bimaterial composed of piezoceramics PZT4 (the upper
material) and PZTS5 (the lower one) with the material properties shown in Table 1. The position of the con-
centrated loading at the crack faces was defined by the value # = 0.2 and the transverse component of the
loading was used to be zero (P;/P3 =0).

In Figs. 2-5 the dependencies of the parameters &, o, k, = kz “Vb d from the crack speed are pre-
sented. The solid lines correspond to a crack of a finite length and ‘the dashed lines are related to the crack
of a semi-infinite length. Particularly in Fig. 2 the variation of the oscillation index g; with respect to the
crack speed v for different directions of polarization of the upper materials defined by the angle f are
shown. Line I correspond to f =0 and the line II is given for = n/6. The values of the critical speed
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Table 1

Material properties

Material constants PZT-5 PZT-4

11 (N/m?) 10.3x 10'° 13.9x 10
¢33 (N/m?) 10.2x 10" 11.5%x 10"
12 (N/m?) 5.8x 10" 7.78 x 1010
13 (N/m?) 5.9x% 10" 7.43 % 10'°
44 (N/m?) 2.5%10'° 2.56 % 10'°
o6 (N/m?) 2.25% 10" 3.06x 10
e31 (C/m?) —7.78 -52

e1s (C/m?) 12.9 12.7

ex3 (C/m?) 15.2 15.1

&1 (C/Vm) 8.92x107° 6.45%x107°
£33 (C/V m) 7.93%x107° 5.62%x107°
p (kg/m?) 7600 7500

0.25 -

0.20 ~

0.15 A

0.10 A

0.05 A

0.00 . . . ; .
0 500 1000 1500 2000 2500
vV m/sec

Fig. 2. The variation of the oscillation index ¢, with respect to the crack speed v for different directions of polarization of the upper
materials.

for these cases are equal to 1975.59 m/s and 1817.76 m/s, respectively. In Figs. 3 and 4 the variation of the
relative contact zone length o with respect to v for different directions of polarization defined by = 0 (line
I), p ==/3 (II) and B = = (III) are shown. Because of the smallness of the contact zone length for small and
moderate values of v the results in Fig. 3 are given in a logarithmic scale and the difference between the
results for cracks with finite or semi-infinite lengths is not visible in this case. The results in Fig. 4 are pre-
sented for a crack speed v tending to the critical speed c., and in Fig. 5 the variation of the dimensionless
SIF k, for the full range of v in the interval (0,c,) for f =0 (line I) and = = (II) are presented.

It follows from the analysis of the results presented in Figs. 2-5 that all values essentially depend on the
crack speed v especially for the near-critical speed region. Particularly for this region the value of the rel-
ative contact zone length o tends to the value of 0 for v — ¢, and the SIF k, grows to infinity. It is clear as
well that the investigated parameters do not depend essentially from the variation of the direction of polar-
ization of the upper material and, moreover, the results for cracks with finite or infinite lengths, respectively
differ only inconsiderable. This conclusion confirms the possibility for using interface crack models with
finite or semi-infinite crack lengths for the investigation of local effects at the correspondent crack tips.
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Fig. 3. The variation of the relative contact zone length o with respect to v for the directions of polarization defined by = 0 (line I),
B =n/3 (I) and f = = (IID).
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Fig. 4. The variation of the relative contact zone length o with respect to v for near critical wave speeds.

7. Electrically impermeable crack

Let us consider now the case of an electrically impermeable crack. It was mentioned in many papers (see
for example the review given by Herrmann et al., 2001) that the electrically permeable assumption is more
realistic than the impermeable one. However, this assumption can be useful in some cases (Suo et al., 1992),
for example if an electrical charge is prescribed at the crack faces.

The formulation of the problem is the same as earlier except that the open part of the crack is now as-
sumed electrically insulated, and the concentrated electrical charge with the intensity D is prescribed at the
points (e, 0) of the crack faces (Fig. 6). Because it was shown above that the direction of polarization has no
essential influence onto the parameters in question these directions here are chosen co-directed with the axis
x3. The conditions at the material interface in the moving coordinates (xi, x3) introduced in Section 2 with
taking into account in-plane components only can be written as follows:
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Fig. 5. The variation of the dimensionless SIF k, with respect to v for =0 (line I) and § = = (II).

U =0, [t]=0 for x; & (c,b), (62a)
Git} = Plé(xl — d), 0';% = P35(x1 — d), D3 :Dé(xl — e) for X € (C, {1), (62b)
05=0, [653]=0, [w3)=0, [p]=0, [Ds]=0  forx € (a,b). (62¢)

Following the analysis presented in Section 2 and taking into account the analytical manipulations per-
formed by Herrmann et al. (2001) leads to the following expressions for the stresses, electrical displacement
as well as for the derivatives of the mechanical displacements and electrical potential jumps at the interface
in the moving coordinate system

0% (x1,0) + muDy (x1,0) + im 013 (x1,0) = F (1) +9,F; (1), j=1,3,4, (63)
njifuy (1, 0)] + (3 [ (%1, 0)] + m [ (x1,0)]) = F[ (v1) — F; (x1), j=1,3,4, (64)
where Fj(z) are functions analytical in the whole plane with a cut along the crack, my = Sy, m; = —iS;,
nj =Y, ny=—iYp, njy = —iYy depend on the crack speed v and are real values, Y;=[Y}, ¥j3, Y] =

S; G and 7; and SJT = (81,85, S; }T are the eigenvalues and the eigenvectors of the system

(G +G)S" = 0. (65)
T T T Cii e e
P
d Ps '
2) A2 (2
T T Cijlzd ’eiji ’8ij2

Fig. 6. Geometry of the problem and the distribution of an electromechanical loading for the case of an electrically insulated crack.
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It should be mentioned that the above conclusion concerning the reality of the coefficients m1;1, mj, n;1, nj3
and n is valid provided y; are real, however, the last condition is satisfied for a variety of practically used
bimaterial combinations.

The substitution of Egs. (63), (64) into the interface conditions (62) leads to the following combined
Dirichlet-Riemann problems for the functions Fy(z), j=1,3:

Fj*(xl) +7,F; (x1) = (P3 +im;jP1)d(xy —d) + muDd(x; —e) for x; € (¢,a), (66)

ImF; (x) =0 for x, € (a,b) (67)
and to the Hilbert problem for the function Fy(z)

FI(xl) +F;()C1) = (P3 + im41P1)5(x1 — d) + WZ44D5(X1 — e) for x; € (C, Cl). (68)
It is proved analytically that y; = 1/ys, m4 = msq4, m;; = —im3; and therefore, the solution of the problem

(66), (67) for j =3 can be found from the solution of this problem for j = 1. This solution is found in the
same way as for the combined Dirichlet-Riemann problem (26), (27) and for trivial values of Fi(z) at infin-
ity has the following form

_ Xs(2) . Y(2) (d—c)la—d) . Y(z) (e—c)a—ce)
R =g | (1) ST () Y ] @
where
¥, =Picos@,(d) +mPysing,(d), ¥,=mPicosq,(d)— P;sing,(d), (70)
l[l3 = m14D COS (pl(e), 'P4 = —m14D sin (0N (6), (71)

whilst X5(z), ¢(z) and Y(z) are defined by the formulas (29)—(31), respectively.
The solution of the problem (68) under the trivial condition at infinity reads follows (Muskhelishvili,
1977):

~ Xo(2) [ Ps +img P, mgsD
C2m | Xg(d)(d—z) Xj(e)e—2z)|

where Xy(z) =[(z — ¢)(z — a)]*l/z.

Using the obtained solutions and the formulas (63), (64) the expressions for the mechanical stresses, elec-
trical displacements as well as for the derivatives of the mechanical displacements and electrical potential
jumps at the interface are found and presented in Appendix A. Egs. (A.2a), (A.2b) and (A.3a), (A.3b) can
be considered as a system of linear algebraic equations from which 0'513) (x1,0), D(;)(x] ,0) for xy € (a,b) and
[} (x1,0)], [¢'(x1,0)] for x; € (a,b) can be easily calculated.

The introduction of the stress and electrical intensity factors defined by the formulas (37)—(39) and the
use of Egs. (B.1) and (B.2) lead to the following expressions for the required IFs

- d—c o e D —m

fi= ﬁ(M44—M14)< (a—c)(a—d)(ml4p3 ui)+ (a—c)(a—e)( wumisD 44?13))’
—_M d—c e—c

= m“\/ﬁyf(% (EBICET IR (bc)(be)>' (74)

F4(Z)

(72)
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| / e—c
k4 < \P3 I’I’l44D lpg > (75)
m14—m44 a—C (1— a—c

The obtained solution is valid for any position of the point a, however, to make it physically correct the
inequalities (43) should be satisfied. The satisfaction of the mentioned inequalities is not so clear as in the
case of an electrically permeable crack. First of all we formulate the following equations:

k=0 (76a)
and /a — x[u;(x1,0)] = 0 which can be written in the form
Ok + Oks =0, (76b)

where @) = (nar/0/y, — ma)/An; Ors = (Mianagr/0/y, — masiig)/An, A, = ni3nag — naznyg, o = ("4+1)

The maximum roots from the interval (0, 1) of Egs. (76a) and (76b) generally can be found numerlcally,
and they are designated by 4; and /,, respectively. However, for small values of these parameters the fol-
lowing asymptotic formulas are valid

J1 = exp 1 (—1)"( arcsin A — arcsin - (OymayyD +P3) ) | +7n )|, (77a)
€1 Apa Apatmay

J2 = exp {1 (-1)" (arcsin (Z‘Pld) — arcsin (A(@“mM —Ou) (©1muD +P3))> + nn)], (77b)

&1 pd(m44@11 - @14)

pd = 1/A§+AJ2” Ax:m“PlcosU—@1m14DsinV—PgsinU,
A4, = O ymDcosV + Pycos U + my Py sin U,

[(1 =9 b—e 1-0 1 -9
17 C’ bic,U—Slan,V—elln 0

The numerical analysis showed that in the considered case the inequalities (43) are satisfied not only for a
single value of the contact zone length /, but usually for a set of positions a € [a;,a;], where a =b — Al
ai=b— Ml ay=>b — Ay/ and [ is the crack length. In other terms this set can be defined as follows

Q,=[a=a Na<a) (78)

This situation is not traditional because usually the real position of the point a is uniquely defined by the
inequalities (43). It was already mentioned and analyzed by Herrmann et al. (2001) and Herrmann and
Loboda (2003) concerning a stationary crack. We only mention here that the existence and the size of
the set @, essentially depend on the materials, the electromechanical loading and the crack speed. This
set exists only if a; < ap; for a, = a; arises the unique point satisfying both inequalities (43) and for
a, < a follows Q, = J, and the contact zone model defined by the boundary conditions (62) does not exist.
In the last case more realistic conditions should be used.

The analysis shows that the most characteristic situation is connected with Q, # J, and it is clear that
for any of such cases a unique contact zone defined by a real position of the point a should exist. In the
paper by Herrmann et al. (2001) a position in question has been defined by means of the theorem of the min-
imum potential energy. The same analysis remains valid here and, therefore, the real position of the point a
coincides with a; provided Q, # & holds true.

The numerical analysis gives a rather manifold picture of results for the case of an electrically imperme-
able crack. But the main conclusions noticed for a stationary crack remain valid here. Particularly, for
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Fig. 7. Dependencies of o for finite and semi-infinite cracks with respect to v tending to ¢, for the case of electrically impermeable
crack-face conditions.

D =0 the set Q, usually exists and is not empty. An increase of D leads to a decrease of (a; — a;) till to the
point where a, = a;. In this point Q, = a, = a; holds true, and the further increasing of D gives Q, = J and
the contact zone model does not exist. On the other hand decrease of D leads to the decrease of both values
a; and a,, but their difference increases. Concerning the influence of the crack tip speed it is worth to be
mentioned that an increase of v usually decreases the difference (a, — a;) and in some cases leads to a trans-
formation from Q, = J to the opposite situation.

In Fig. 7 for the same bimaterial as in Table 1 the dependence of the relative contact zone length o with
respect to the crack tip speed in the near-critical speed region is presented. Line I corresponds to a finite
crack and line II to a semi-infinite one. The mechanical loading was the same as for the electrically perme-
able crack (P; = 0,P; = —10° N/m), but in addition an electrical charge of intensity D = —2.48 x 10~* C/m?
was prescribed in the point (0, e) with (b — e)/(b — ¢)~' = 0.15. It follows from the presented figures that the
behavior is similar to the case of an electrically permeable crack, i.c. the increase of v leads to an essential
increase of the contact zone length especially in the near-critical speed zone.

8. Conclusion

A moving interface crack with a mechanically frictionless and electrically permeable contact zone at the
leading crack tip in a piezoelectric bimaterial is considered. In the first chapters of the paper the open part
of the crack is assumed to be electrically permeable and concentrated forces of an arbitrary direction are
prescribed at the crack faces.

By introduction of a moving coordinate system attached to the crack tip and by using the formal identity
of the obtained relations to the associated case of a stationary crack the presentations of the mechanical
displacements and electrical potential jumps (13a) as well as of the stresses and electrical displacements
(13b) at the material interface via a sectionally holomorphic vector-function are obtained.

A finite length interface crack (Yoffe-type crack) is considered in Section 4. By means of the presenta-
tions (13) this problem is reduced to an inhomogeneous combined Dirichlet-Riemann problems (26) and
(27) which has been solved exactly. All electromechanical characteristics at the interface are presented in
a closed form for an arbitrary contact zone length. Further, from the additional inequalities (43) the tran-
scendental equation (44) for the determination of the real contact zone length and the formula (47) for the
associated stress intensity factors of the shear stress are obtained. As a particular case of the obtained solu-
tion a semi-infinite interface crack is considered in Section 5 and simple formulas (58), (59) for the contact
zone length and the stress intensity factor of the shear stress are given.
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The numerical illustrations of the obtained solutions for an electrically permeable crack are presented for
the bimaterial PZT4/PZT5 (Table 1) in Figs. 2-5. In all considered cases an essential increase of the bima-
terial constant e, the real contact zone length and the associated shear stress intensity factor for a crack
speed v tending to the critical (Rayleigh or Bleustein—Gulyaev) wave speed is observed.

The case of electrically impermeable crack faces is considered briefly in Section 7. In this case in addition
to the Dirichlet-Riemann problem (67) the Hilbert problem (68) arises. However, an exact analytical solu-
tion has been obtained in this case as well and the prescribed concentrated electrical charge (in addition to
the mechanical loading) at the crack faces is taken into account.
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Appendix A

The expressions for the mechanical stresses, electrical displacement, the derivatives of the mechanical
displacements and electrical potential jumps at the interface for an electrically impermeable crack

m \/(%Zn ((Tl ﬁ* ¥ ﬁ) sin (x1)
+<'1”2 (b —d)(d 76) \/ﬁ) cos ¢( x1)> for x; > b, (A.1)

x1 — b(x; — d) X1 —b(x; —e)

oy (x1,0) =

1
043 (x1,0) +miuDy (x1,0) = — (x1 —c)(x1 —a)y 2
1= 1—a))

(w. =, ¢7> (explin(r1)]-+ 1 expl—pu(r1)

X1 —e

" (avz 020 | g e IC ‘e)> o E=explion(en)] —rexpl-o )

X —e

forx; € (a,b), (A.2a)

(e—c)(a—e) myuD

O'(l) X1, Mya gl) X1, = —
33 (41,0) 4 maaD;7(x1,0) (x1 —c)(x; —a)m(x; —d) (x1—¢)(x1 —a)m(x; —e)

forx; € (a,b), (A.2b)

s [y (x1,0)] 4 nia[g’(x1,0)]
cosh(me)

1/ (%1 —¢)(a —x1)

(lPl cos ¢y (x1) — ¥ sin g, (1) );(()2)> (d(xl C_)(;’)_ :

Y(x1)> Vle=c a—e] for x; € (c,a), (A.3a)

Y(d) x| —e

+<Y/3 cos @ (x1) — Wysin @, (x)
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(d—c)a—d) Ps (e—c)(a—e)
(xr—c)la=x)(xi—d) | (x1—c)la—x1)(x1 —e)
for x| € (c,a), (A.3Db)

m 44D

+

Q|-

ngs [y (x1,0)] 4 naa9'(x1,0)] =

niy [u] (x1,0)]
1
/71 (1 = ¢)(x1 — a)

(d—c)(a—d)
(x1 —d)

+ | cosh ¢ (x1) V5 + sinh @y (x1) P4 for x; € (a,b), (A.4)

where

@o(x1) = 2¢; arctan
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